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The Sixth-Moment Sum Rule for the Pair
Correlations of the Two-Dimensional
One-Component Plasma: Exact Result
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The system under consideration is a two-dimensional one-component plasma in
the fluid regime, at density n and arbitrary coupling 1=;e2 (e=unit charge,
;=inverse temperature). The Helmholtz free energy of the model, as the
generating functional for the direct pair correlation c, is treated in terms of a
convergent renormalized Mayer diagrammatic expansion in density. Using
specific topological transformations within the bond-renormalized Mayer
expansion, we prove that the nonzero contributions to the regular part of the
Fourier component of c up to the k2-term originate exclusively from the ring
diagrams (unable to undertake the bond-renormalization procedure) of the
Helmholtz free energy. In particular, ĉ(k)=&1�k2+1�(8?n)&k2�[96(?n)2]+
O(k4). This result fixes via the Ornstein�Zernike relation, besides the well-
known zeroth-, second-, and fourth-moment sum rules, the new sixth-moment
condition for the truncated pair correlation h, n(?1n�2)3 � r6h(r) dr=
3(1&6)(8&31 )�4.

KEY WORDS: One-component plasma; logarithmic interaction; pair correla-
tion; diagrammatic expansion; sum rule.

1. INTRODUCTION

Coulomb plasmas are the model systems for studying the effect of long-
range interparticle interactions on statistics of classical lattice and con-
tinuous fluids. It was observed that, in arbitrary dimension, the long-range
tail of the Coulomb potential gives rise to exact constraints, sum rules, for
truncated particle correlations (for an exhausting review, see ref. 1), namely
the zeroth- and second-moment conditions.(2, 3)
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The concentration on two dimensions (2d) with logarithmic interpar-
ticle interactions and on the one-component plasma (OCP), i.e., the
continuous system of charged particles embedded in a spatially uniform
background, brings some physical peculiarities and relevant mathematical
simplifications providing additional exact information about the system,
like:

�� A formal relationship to the fractional quantum Hall effect;(4)

�� An experimental evidence for the Wigner crystallization at low
temperatures;(5)

�� The dependence of the statistics on the only parameter-coupling
constant 1t1�temperature (the charge density scales appropriately the
distance);

�� The availability of the equation of state(6);

�� The mapping to free fermions at special coupling 1=2(7) (for
various sample's geometries, see review 8) characterized by a pure
Gaussian decay of the truncated pair correlation h; the evaluation of the
leading term of the (1&2)-expansion of h, indicating the change from
monotonic to oscillatory behavior just at 1=2(7);

�� The rigorous derivation of the weak-coupling 1 � 0 Debye-Hu� ckel
limit(9), and the systematic 1-expansion of h in terms of a renormalized
Mayer diagrammatic expansion;(10, 11)

�� The shift of the compressibility equation to the fourth-moment
condition(12&14) under the assumption of cluster conditions;

�� A symmetry of thermodynamic quantities with respect to a com-
plex transformation of particle coordinates(15) for arbitrary coupling 1,
implying a functional relation among the pair correlations. The last is
equivalent to an infinite sequence of sum rules relating the coefficient of the
short-distance expansion of two-particle correlations (the lowest level of
the sequence was derived by Jancovici(16)). The generalization of the sym-
metry to multi-particle densities, possessing specific invariant structure, was
given in ref. 17.

�� The suggestion that, at arbitrary 1, the 2d OCP is in the critical
state(18, 19) in terms of the induced electrical-field correlations (but not the
particle correlations). The free energy is therefore supposed to exhibit
finite-size correction predicted by the conformal-invariance theory, as was
verified by the rigorous finite-size treatment of the 1=2 case and also
numerically, (20) by using exact finite-size techniques, (4, 21&23) for coupling
strengths 1=4 and 1=6.
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The present paper is devoted to a rigorous derivation of the new sixth-
moment sum rule for the truncated pair correlation h of the 2d OCP. The
mathematical basis comes from the convergent bond-renormalized Mayer
expansion in density.(11) Within a specific classification of the diagrams in
the renormalized format for the Helmholtz free energy, the functional
generator for the direct pair correlation c, we prove that the regular part
of the Fourier component of c is determined up to the k2-term solely by the
(unrenormalized) ring diagrams of the generating free energy. This result
implies via the Ornstein�Zernike (OZ) relation, besides the known zeroth-,
second-, (2, 3) and fourth-moment(12&14) sum rules, the explicit formula for
the sixth moment of h.

The paper is outlined as follows:
In Section 2, we recapitulate briefly the ordinary Mayer diagrammatic

representation in density for h and c pair correlations and the (excess)
Helmholtz free energy as the generating functional for both of them.

Section 3 deals with exactly solvable cases or limits of the 2d OCP,
expressed in terms of h-moments. These involve the momentum sum rules,
the 1=2 coupling together with the leading (1&2) correction term and
the Debye-Hu� ckel 1 � 0 limit. Here, we have registered a very important
fact. The three known (appropriately rescaled) zeroth, second and fourth
moments turn out to be 1-polynomials of (successively increasing) finite
order. By using the renormalized Mayer expansion(11) we were able to
compute for the as-yet-unknown sixth h-moment the coefficients to a few
lower orders of the 1-expansion terms around the Debye-Hu� ckel limit and
observed, within the range of these low orders, the finite 1-truncation also
for this case. To our surprise, this finite truncation represented an exact
interpolation between the 1 � 0 and 1=2 couplings and, moreover,
reproduced correctly the leading (1&2) correction term.(7) Since the
coupling 1=2 and its neighborhood do not play any special role in view
of the 1-expansion, the above fact was a strong indication and motivation
for us.

Section 4 describes the formalism of the renormalized Mayer expan-
sion.(11) The renormalization of bond factors consists in a multiple-bond
expansion of Mayer functions and a consequent series elimination of field
circles, resulting in the modified Bessel functions of second kind. The
novelty lies in the classification of diagrams representing the Helmholtz free
energy��the functional generator of c��according to the possibility of per-
forming the series-elimination transformation: (1) simple unrenormalized
bond generates the characteristic singular term of c; (2) all unrenormalized
ring diagrams (which cannot undertake the series-elimination procedure)
generate the renormalized ``watermelon'' Meeron graph contribution to the
regular part of c; (3) every other diagram is expressible with all bonds
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renormalized and as generator gives rise to a family of c-diagrams: the
families do not overlap with one another and, as units, they exhibit
remarkable ``cancellation properties''.

The ``cancellation'' phenomena is the subject of the crucial Section 5
where we prove that, regardless of the topology of a separate graph belong-
ing to class (3), the zeroth and second real-space moments of the
c-diagrams family, generated from the underlying graph, vanish. The proof
of the nullity of the zeroth moment follows from a trivial scaling property
of the Bessel functions with respect to density. The proof of the second-
moment condition is much more complicated. Besides the above scaling
property it requires to introduce an elimination procedure for two-coor-
dinated root points generated on renormalized bonds and to reveal ``hidden
zeros'' due to the translational and rotational invariance of the infinite
system, realized through per-partes integration of field-point coordinates.

In Conclusion, after evaluating the only contribution to the Fourier
component of c up to the k2-term, namely that of the renormalized Meeron
graph, we write down by using the OZ relation the explicit formula for the
sixth moment of h. The structure of higher-order moments of h is also
discussed.

2. A SKETCH OF THE MAYER EXPANSION IN DENSITY(24)

We consider a system of identical pointlike particles in volume V of a
d-dimensional space, interacting through pair potential v; v will occur in
combination called the Mayer function

f (i, j )=exp[&;v(i, j )]&1 (1)

where ; is the inverse temperature and, for notational convenience, a posi-
tion vector ri is represented simply by i. In the inverse (density) format, i.e.,
with the density n(r)=(�i $(r&ri )) as controlling variable, the (minus)
excess free energy F� ex is the relevant thermodynamic potential. Its Mayer
diagrammatic representation reads

;F� ex=[all connected diagrams which consist of N�2 field (black)

n-circles and f -bonds, and are free of connecting circles] (2)

(the removal of a connecting circle disconnects the diagram). The excess
free energy is the generating functional for the truncated pair correlation

h(1, 2)=
n2(1, 2)&n(1) n(2)

n(1) n(2)
(3)
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with the two-body density n2(r, r$ )=(�i{ j $(r&ri ) $(r$&rj )) and for the
direct correlation function c, in the sense that

h(1, 2)=&1+[1+ f (1, 2)]
1

n(1) n(2)
$;F� ex

$f (1, 2)
(4)

c(1, 2)=
$ 2; F� ex

$n(1) $n(2)
(5)

With regard to (2), this implies

h(1, 2)=[all connected 1, 2-rooted diagrams which consist of field

n-circles and f -bonds, and are free of articulation circles] (6)

[the removal of an articulation circle disconnects the diagram into two or
more components, of which at least one contains no root (white) circle];

c(1, 2)=[all connected 1, 2-rooted diagrams which consist of field

n-circles and f -bonds, and are free of connecting circles] (7)

The link between h and c is established in terms of the OZ relation

h(1, 2)=c(1, 2)+| c(1, 3) n(3) h(3, 2) d3 (8)

If the system is infinite (V � �), homogeneous, n(1)=n, and both iso-
tropic and translationally invariant, h(1, 2)=h( |1&2|), c(1, 2)=c( |1&2| ),
it is useful to introduce the Fourier components

f (r)=
1

(2?)d�2 | exp(ik } r) f� (k) dk (9a)

f� (k)=
1

(2?)d�2 | exp(&ik } r) f (r) dr (9b)

Especially, in d=2 dimensions,

f� (k)=|
�

0
rf (r) J0 (kr) dr

= :
�

j=0

(&1) j

( j !)2 \k 2

4 +
j 1
2? |

�

0
r2jf (r) dr (10)
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with J0 being the ordinary Bessel function. In the Fourier space, the OZ
relation (8) takes the form

h� (k)=ĉ(k)+(2?)d�2 nĉ(k) h� (k) (8$)

where k=|k|.

3. MOTIVATION

The classical OCP is a system of particles of charge e embedded in a
spatially uniform neutralizing background. In d=2 dimensions, the
Coulomb interaction energy is given by

&;v(1, 2)=1 ln |1&2| (11a)

&;v̂(k)=&1�k 2 (11b)

with 1=;e2 being the coupling constant. We will concentrate on the ther-
modynamic limit of the fluid regime with constant density n(i)=n and use
the notation

I2j=| r2jh(r) dr (12)

for the moments of the truncated pair correlation.
Let us first summarize exactly solvable cases of the model. In the weak

coupling 1 � 0 limit, h displays the Debye�Hu� ckel screening(9)

h(r ; 1 � 0)&&1K0 (r - 2?1n) (13)

with K0 the modified Bessel function of second kind. Consequently,

lim
1 � 0

n \?1n
2 +

j

I2j (1 )=&( j !)2 (14)

At 1=2, the mapping onto free fermions provides a pure Gaussian form
of h, (7)

h(r; 1=2)=&exp(&?nr2) (15)

implying

n(?n) j I2j (1=2)=&j ! (16)
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The leading-order of the series expansion around 1=2 results in(7)

h(r ; 1 )=h(r ; 1=2)+(1&2) $h(r)+ } } } (17a)

$h(r)=Ei(&?nr2)&1
2 Ei(&?nr2�2)

+exp(&?nr2)[ 1
2 Ei(?nr2�2)&[ln(?nr2)+C]] (17b)

where C is Euler's constant and Ei the exponential-integral function. From
(17) one gets after some algebra

n \?1n
2 +

j

I2j (1 )=&j !+(1&2) j ! \ :
j

k=0

2k&1
k+1

&
j
2++O[(1&2)2] (18)

The long-range tail of the Coulomb potential gives rise to exact con-
straints (sum rules) for the moments of the truncated two-body correlation,
like the zeroth-moment (perfect screening) condition

nI0=&1 (19a)

the second-moment (Stillinger�Lovett) condition(2, 3)

n \?1n
2 + I2=&1 (19b)

the fourth-moment (compressibility) condition(12�14)

n \?1n
2 +

2

I4=&4+1 (19c)

Note that the sum rules are consistent with exact formulae (14), (18).
The expressions for the rescaled moments (19) correspond to finite

truncations of their 1-expansion around 1=0. The 1-expansion technique
of h, (11) explained and extended in the next section, enables one to evaluate
systematically the coefficients of the 1-expansion also for higher moments.
For the sixth moment of h, we were able to attain with a little effort the
third order of 1, with the result

n \?1n
2 +

3

I6=&36+
39
2

1&
9
4

1 2+0_1 3+O(1 4) (20)
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The appearance of the zero coefficient to the 1 3 power indicates the
possibility of a finite 1-truncation for I6 , too. This hypothesis is strongly
supported by the fact that the truncation of (20) at the 1 2-term inter-
polates correctly from the 1 � 0 limit [relation (14)] to the 1=2 coupling
in the sense that the rescaled moment I6 satisfies (18), i.e., the rhs of (20)
acquires the exact value (&6) at 1=2 and exhibits the exact prefactor 21�2
to the leading (1&2) correction term. These facts were our primary
motivation for proving rigorously the conjecture of the finite 1-series-
truncation of I6 .

It turns out to be more convenient to formulate the above sum rules
in terms of the small-k expansion of the Fourier component of the direct
correlation, ĉ(k). Inserting (19) together with the suggested truncation of
the sixth moment at the 1 2-term (20) into the representation (10) for h� (k),
the OZ relation (8') implies the expected form

ĉ(k)=&
1
k 2+

1
8?n

&
k 2

96(?n)2+O(k 4) (21)

Note the characteristic singular leading term of ĉ(k), &;v̂(k)=&1�k 2,
succeeded by the regular k 2-series expansion part: its knowledge up to the
k 2j term determines h� (k) up to the k 2( j+2) term, or equivalently, the real-
space h-moments (12) up to I2( j+2) .

4. RENORMALIZED MAYER EXPANSION

The Mayer function f can be expanded in the inverse temperature ; as
follows

f (1, 2)=&;v(1, 2)+
1
2!

[&;v(1, 2)]2+
1
3!

[&;v(1, 2)]3+ } } } (22)

Graphically,

(22$)

where the factor 1�(number of interaction lines)! is automatically involved
in each diagram. Let us perform the above f -decomposition within the
diagrammatic representation (2) of ;F� ex:
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etc. If there are only one- or two-coordinated field circles in a graph (by
coordination of a vertex we mean its bond-coordination), we do nothing.
If there are some three- or more-coordinated field circles in a graph, we can
eliminate all two-coordinated field circles by a series transformation and
arrive at a connected graph of field circles of coordination �3, called
skeleton. Grouping the diagrams which are reduced to the same skeleton
after series elimination, the bonds connecting skeleton field circles become
dressed according to

(23)

Equivalently,

K(1, 2)=[&;u(1, 2)]+| [&;u(1, 3)] n(3) K(3, 2) d3 (23$)

or, in the case of an infinite homogeneous fluid,

K� (k)=[&;û(k)]+(2?)d�2 n[&;û(k)] K� (k) (23")

The procedure of bond renormalization thus implies

;F� ex[n]= +D0[n]+ :
�

s=1

Ds [n] (24a)

where D0 is the sum of all unrenormalized ring diagrams (which cannot
undertake the renormalization procedure)

(24b)
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and

:
�

s=1

Ds={all connected diagrams which consist of N�2 field

n-circles of coordination �3 and multiple K-bonds,

and are free of connecting circles= (24c)

represents the set all remaining completely renormalized graphs. Under
multiple K-bonds we mean the possibility of an arbitrary number of
K-bonds between a couple of field circles. The order of numeration of
D-diagrams in (24c) is irrelevant, let us say

(25)

and so on. The symbol Ds will reflect the notation of a given diagram and
simultaneously its integral representation.

Having classified the renormalized graphs of ;F� ex, we proceed by con-
sidering the direct correlation c, defined by equation (5). From (24) one
derives

c(1, 2)= +c0 (1, 2)+ :
�

s=1

cs (1, 2) (26a)

where c0 (1, 2)=$ 2D0 �$n(1) $n(2) can be easily shown to correspond to the
renormalized ``watermelon'' Meeron graph

c0 (1, 2)= =
1
2!

K2 (1, 2) (26b)

and cs (1, 2) with s=1, 2,... denotes the whole family of 1,2-rooted diagrams
generated from Ds ,

cs (1, 2)=
$ 2Ds

$n(1) $n(2)
(26c)
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To get explicitly a given family cs , one has to take into account the func-
tional dependence of the dressed K-bonds (23) on the density as well. Since
with regard to (23') it holds

$K(1, 2)
$n(3)

=K(1, 3) K(3, 2) (27)

the functional derivative of Ds with respect to the density field generates the
root circle not only at field-circle positions, but also on K-bonds, causing
their ``correct K-K division''. For example, in the case of generator D1

drawn in (25), we obtain

(28)

It stands to reason that the coordination of field circles remains to be �3
after the functional derivation, while the root 1, 2-circles can be two-
coordinated (just when being generated on a K-bond). The [cs]�

s=1

diagram families evidently do not overlap with each other.
The specialization to the infinite 2d OCP, with dimensionless interac-

tion energy (11), leads to the dressed K-bond (23) of the form

K� (k)=&
1

k 2+2?1n
(29a)

K(r)=&
1
2? |

1
k2+2?1n

exp(ik } r) dk

=&1K0 (r - 2?1n) (29b)

The series renormalization of the logarithmic interaction thus leads to the
modified Bessel function of second kind: its decay to zero at asymptotically
large distance makes the renormalized Mayer diagrams properly con-
vergent.(11) Note the specific r - n dependence of K which has a fundamen-
tal impact on the n-classification of renormalized diagrams. As concerns the
1-order of a given diagram D with N field circles and L bonds, every
dressed bond (29) brings the factor 1 and enforces the substitution
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r$=r - 1 which manifests itself as the 1 &1 factor for each field-circle
integration t� r dr, so that the 1-order=L&N. For example, in (25),
D1t1 and D2 , D3 , D4 , D5 constitute the complete set of ;F� ex-diagrams
t1 2.

5. SUM RULES

Let the given completely renormalized diagram Ds (s=1,...) of the
excess Helmholtz free energy be composed of N skeleton vertices i=1,..., N
and L bonds :=1,..., L. Ds can be formally expressed as

Ds[n]=| `
N

i=1

[di n(i)] `
L

:=1

K(:1 , :2) (30)

where :1 , :2 # [1,..., N], :1<:2 denotes the ordered pair of vertices joint
by the :-bond and we have omitted topological factors. Whenever not con-
fusing, we will use the symbol K:#K(:1 , :2) and omit the ranges [1, N ]
and [1, L] for a sum or product over skeleton vertices i and bonds :,
respectively. The family of direct correlations cs (r, r$), generated according
to cs (r, r$)=$2Ds[n]�$n(r) $n(r$), can be straightforwardly expressed in the
uniform-density regime n(i)=n as follows:

cs (r, r$ )

=nN&2 | `
i

di :

(i{ j )
i, j

$(r&i) $(r$& j ) `
:

K: (a)

+nN&1 | `
i

di :
i

$(r&i) :
:

K(:1 , r$ ) K(r$, :2) `
;{:

K; (b)

+nN&1 | `
i

di :
i

$(r$&i) :
:

K(:1 , r) K(r, :2) `
;{:

K; (c)

+nN | `
i

di :
:

K(:1 , r$ ) K(r$, r) K(r, :2) `
;{:

K; (d)

+nN | `
i

di :
:

K(:1 , r) K(r, r$ ) K(r$, :2) `
;{:

K; (e)

+nN | `
i

di :

(:{;)
:, ;

K(:1 , r) K(r, :2) K(;1 , r$ ) K(r$, ;2) `
#{:, ;

K# (f )

(31)
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where we have applied the functional relation (27). The (a) term on the rhs
of (31) corresponds to the creation of root points at two skeleton vertices,
the next two (b, c) terms to one root circle generated at the skeleton and
the other one at a bond, the (d, e) terms to two root points at the same
bond and the last (f ) term represents two root points generated at different
renormalized bonds :{;. It stands to reason that now K(r, r$ )=K( |r&r$| )
satisfying (A1), (A2a, b) and, consequently, cs (r, r$ )=cs ( |r&r$| ).

In this section, we aim at proving the validity of the moment equalities

| cs (r) dr=0 (32a)

| r2cs (r) dr=0 (32b)

for every family s=1, 2,..., regardless of the topology of the generating
diagram Ds . To keep the interchange-particle symmetry and the transla-
tional-invariance property of the problem, we will use instead of (32a, b)
the following equivalent definitions of the moments:

J (s)
0 =

1
V | cs (r, r$ ) dr dr$ (33a)

J (s)
2 =

1
V | |r&r$ |2 cs (r, r$ ) dr dr$ (33b)

The introduction of volume V into the formulation of the infinite-volume
limit does not mean any loss of rigour. Definitions (33a, b) have to be
understood in the sense that an arbitrary one of integration coordinates
r, r$, [i ] can be taken, due to the invariance of the integrated function with
respect to a uniform shift in all variables, as a reference and put at the
origin 0, with the simultaneous cancellation of V. The right choice of the
reference can simplify otherwise tedious algebra.

5.1. Proof of the Zeroth-Moment Condition (32a)

By using the definition (33a), the zeroth moment of cs (31) can be
expressed as
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J (s)
0 =N(N&1) nN&2 1

V | `
i

di `
:

K: (a)

+2NnN&1 1
V | `

i

di :
:

�K:

�n
`

;{:

K; (b+c)

+nN 1
V | dr | `

i

di :
:

�K(:1 , r)
�n

K(r, :2) `
;{:

K; (d)

+nN 1
V | dr | `

i

di :
:

K(:1 , r)
�K(r, :2)

�n
`

;{:

K; (e)

+nN 1
V | `

i

di :

(:{;)
:, ;

�K:

�n
�K;

�n
`

#{:, ;

K# (f )

(34)

where we have taken into account relation (A2a). Since

| dr _�K(:1 , r)
�n

K(r, :2)+K(:1 , r)
�K(r, :2)

�n &=
�2K(:1 , :2)

�n2

we find

J (s)
0 =

�2

�n2 _nN

V | `
N

i=1

di `
L

:=1

K:& (35)

Let us put say i=1 at the origin 0, and ``cancel'' the integration over 1 with
volume V. As K(:1 , :2)=&1K0 (- 2?1n |:1&:2| ) for the 2d OCP, the
evoked substitution i $=i - 2?1n for (N&1) remaining coordinates i=
2,..., N results in the factor 1�n(N&1). Therefore,

J (s)
0 t

�2

�n2

nN

n (N&1)=0 (36)

in agreement with (32a).

5.2. Proof of the Second-Moment Condition (32b)

By using the definition (33b), the second moment of cs (31) is written
as
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J (s)
2 =

nN&2

V | `
i

di :

(i{ j )
i, j

|i& j |2 `
:

K: (a)

+
2nN&1

V | `
i

di :
i, :

| |r&i|2 K(:1 , r) K(r, :2) dr `
;{:

K; (b+c)

+
2nN

V | `
i

di :
:
| |r&r$| 2 K(:1 , r) K(r, r$ ) K(r$, :2) dr dr$ `

;{:

K;

(d+e)

+
nN

V | `
i

di :

(:{;)
:, ;

| |r&r$ | 2 K(:1 , r) K(r, :2)

_K(;1 , r$ ) K(r$, ;2) dr dr$ `
#{:, ;

K# (f )
(37)

The integrations over r and r$ in (37) correspond to root points generated
on renormalized K-bonds, and interacting with another root point at the
skeleton or with one another. In Appendix A we show how to transform
these integrals to the form with exclusively skeleton |i& j |2, 8( |i& j | ) and
9( |i& j | ) interactions [for definitions of 8 and 9 see (A7) and (A10),
respectively] and appropriately ``decorated'' bonds [under decoration, we
mean the derivation with respect to density, equation (A2a)]. The suc-
cessive application of formulae (A8), (A10) and (A9) to the respective
terms (b+c), (d+e) and (f ) of (37) yields

J (s)
2 =

nN&2

V | `
i

di :

(i{ j )
i, j

|i& j |2 `
:

K: (a)

+
2nN&1

V | `
i

di :
: _:

i

1
2

( |:1&i|2+|:2&i| 2)
�K:

�n
+N8:& `

;{:

K;

(b+c)
+

2nN

V | `
i

di :
:

9: `
;{:

K; (d+e)

+
nN

V | `
i

di :

(:{;)
:, ; _1

4
( |:1&;1| 2+|:1&;2|2

+|:2&;1|2+|:2&;2|2)

_
�K:

�n
�K;

�n
+

�K:

�n
8;+

�K;

�n
8:& `

#{:, ;

K# (f )
(38)
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Let us now define the auxiliary function

G(s) (n)=
2nN+1

V | `
i

di :
:

8: `
;{:

K;

#
nN+1

V | `
i

di \:
:

8: `
;{:

K;+:
;

8; `
:{;

K:+ (39)

Up to the prefactor 2�V, it originates from Ds (n) (30) by picking out suc-
cessively bonds one after the other and interchanging the bond factor
K � n8. 8: is expressible from (A7) and (29a) in the form

8:=
41 2

(2?1n)2 |
p2

( p2+1)4 exp[ip } (:1&:2) - 2?1n] dp (40)

With the aid of the scaling argument leading to relation (36), G(s) can be
shown to scale with n like

G(s) (n)t
nN+1

nN&1n2=n0 (41)

As a consequence, �G(s) (n)��n=0. Explicitly,

0=
2(N+1) nN

V | `
i

di :
:

8: `
;{:

K;

+
2nN+1

V | `
i

di :
:

�8:

�n
`

;{:

K;

+
nN+1

V | `
i

di :

(:{;)
:, ; \8:

�K;

�n
+8;

�K:

�n + `
#{:, ;

K# (42)

Subtracting [Eq. (42)]�n from formula (38), the latter takes a simpler form

J (s)
2 =

nN&2

V | `
i

di :

(i{ j )
i, j

|i& j | 2 `
:

K:

+
nN&1

V | `
i

di :
i, :

( |:1&i|2+|:2&i| 2)
�K:

�n
`

;{:

K;
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+
2nN

V | `
i

di :
: _9:&

1
n

�(n8:)
�n & `

;{:

K;

+
nN

4V | `
i

di :

(:{;)
:, ;

( |:1&;1| 2+|:1&;2| 2+|:2&;1| 2+|:2&;2|2)

_
�K:

�n
�K;

�n
`

#{:, ;

K# (43)

It is trivial to show that

9:&
1
n

�(n8:)
�n

=&| e ip } (:1&:2) 2p _ 1 2

4n( p2+2?1n)2&
?1 3

( p2+2?1n)3& dp

=|:1&:2 |2 | eip } (:1&:2) _ 1 2

4n( p2+2?1n)2&
?1 3

( p2+2?1n)3& dp

=
|:1&:2 |2

4n2 \n
�

�n+
2

K: (43$ )

Equation (43) together with the complementary one (43') represent the for-
mulation of the second moment of ĉs in the renormalized format in terms
of quadratic interactions exclusively between pairs of skeleton vertices.

For tactical reasons, we now specify the connectivity of diagram Ds ,
instead of enumerating present renormalized bonds :=1,..., L, by the set
[&ij ]N

i, j=1
(i{ j)

where &ij=& ji is the number of K-bonds between skeleton vertices

i, j (&ij=0 if there is no bond between i, j ). Let us choose a couple of
skeleton vertices, say 1 and 2, and group all factors in (43), (43') associated
with the |1&2|2 interaction:

nN&2

V | `
i

di |1&2|2 `
N

u, v=3
(u<v)

K &uv (u, v)

_{2K &12 (1, 2) `
N

i=3

K &1i (1, i) `
N

j=3

K &2j (2, j )

+2&12K &12&1 (1, 2) _n
�K(1, 2)

�n & `
N

i=3

K &1i (1, i) `
N

j=3

K &2 j (2, j )
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+K &12 (1, 2) _n
�

�n
`
N

i=3

K &1i (1, i)& `
N

j=3

K &2j (2, j )

+K &12 (1, 2) `
N

i=3

K &1i (1, i) _n
�

�n
`
N

j=3

K &2 j (2, j )&
+

1
2

&12K &12&1 (1, 2) _\n
�

�n+
2

K(1, 2)& `
N

i=3

K &1i (1, i) `
N

j=3

K &2j (2, j )

+
1
2

&12 (&12&1) K &12&2 (1, 2) _n
�K(1, 2)

�n &
2

`
N

i=3

K &1i (1, i) `
N

j=3

K &2 j (2, j )

+
1
2

&12K &12&1 (1, 2) _n
�K(1, 2)

�n & _n
�

�n
`
N

i=3

K &1i (1, i)& `
N

j=3

K &2j (2, j )

+
1
2

&12K &12&1 (1, 2) _n
�K(1, 2)

�n & `
N

i=3

K &1i (1, i) _n
�

�n
`
N

j=3

K &2j (2, j )&
+

1
2

K &12 (1, 2) _n
�

�n
`
N

i=3

K &1i (1, i)& _n
�

�n
`
N

j=3

K &2j (2, j )&= (44)

In the case of the considered Bessel functions (29), the operator n(���n)
acting on K(i, j ) can be substituted by a coordinate-operator as follows

n
�

�n
K(i, j )=

1
2 \rij

�
�rij+ K( |ri&rj | )

#
1
2

RijK( |ri&rj | ) (45)

As one can derive directly from the definition (45), there exist more equiv-
alent representations of operator Rij ,

Rij =rij
�

�rij

=(ri&rj ) } {i

=(rj&ri ) } {j

=
1
2

(ri&rj ) } ({i&{j ) (46)
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Finally, denoting Fij=K:ij ( |i& j | ) and summing over all pairs of skeleton
vertices, Eqs. (43), (44) and (45) imply

J (s)
2 �nN&2=

1
V | `

i

di `
u<v

Fuv :
i< j

|i& j |2

_{2+
1

F ij
(R ijFij )+

1
8F ij

(R2
ij Fij )

+
1
2

:
k{i, j _

1
Fik

(Rik F ik )+
1

Fjk
(RjkFjk)&

+
1

8Fij
(RijF ij ) :

k{i, j _
1

Fik
(RikF ik)+

1
F jk

(Rjk Fjk)&
+

1
8

:
k, l{i, j

1
FikFjl

(RikF ik)(RjlF jl)= (47)

In what follows we aim at proving the nullity of the rhs of (47),
irrespective of the particular form of the bond-dependent functions Fij (rij )
(provided that the integrals exist what certainly applies to our case of
F-functions). As shown in Appendix B, due to a scaling transformation of
coordinates in integrals of translationally-invariant functions over infinite
2d space, Eq. (47) is reducible to a simpler relation

8J (s)
2 �nN&2=| `

i

di `
u<v

Fuv :
i< j

|i& j |2

_{ :
k{i, j _

1
2F ik

(ri&rj ) } {iF ik+
1

2F jk
(rj&ri ) } {jFjk&

+ :
k, l{i, j

1
FikFjl

[(rj&rk) } {iF ik][(ri&rl ) } { j Fjl]= (48)

Let us consider [Fij ] to be the functions of r2
ij rather than rij , without

changing the symbol F. Thus

{i Fij (r2
ij)=

dF ij (r2
ij)

d(r2
ij)

2(ri&rj ) (49)

Using the notation

F� ij=
1

Fij

dFij (r2
ij)

d(r2
ij)

(50)
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Eq. (49) can be rewritten as follows

{iFij=2(ri&rj ) F ijF� ij (49$)

Inserting (49') into (48) and grouping the F� and F� F� terms we obtain

8J (s)
2 �nN&2=| `

i

di `
u<v

Fuv{ :
(i< j )

F� ij :
k{i, j

rij } (r2
ikrik&r2

jkrjk)

+2 :
(i< j )

:
(k<l )

F� ij F� kl[r2
ik (rij } rkj )(ril } rkl)+r2

il (rij } rlj )(rik } rlk)

+r2
jk (rji } rki )(rjl } rkl)+r2

jl (rji } r li )(rjk } rlk)]= (51)

with the obvious notation rij=ri&rj .
Our further goal is to prove the nullity of the rhs of (51). We show

that the per-partes integration of the bilinear F� F� term in (51) gives a linear
F� term which exactly eliminates the linear F� term in (51). To do so, we
express the bilinear F� F� term in integral (51) in an ``ansatz'' form

| `
i

di `
u<v

Fuv[(r12 F� 12+r13F� 13+...+r1NF� 1N) } Q1

+(r21F� 12+r23F� 23+ } } } +r2NF� 2N) } Q2+ } } } ] (52)

The vector functions Qi must be linear combinations of F� kl with k, l{i
since the terms F� ijF� ij vanish in (51); Q1=Q (2, 3)

1 F� 23+Q (2, 4)
1 F� 24+ } } } +

Q(N&1, N )
1 F� N&1, N , etc. In general,

Qi= :

k<l
k, l{i

Q (k, l )
i F� kl (53)

where the three-point vector coefficients Q (k, l )
i ,

Q (k, l )
i {0 iff i{k{l (54a)

depend only on coordinates [ri , rk , rl]. It is natural to extend their defini-
tion as follows

Q (k, l )
i =Q (l, k)

i (54b)
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Comparing Eq.(52) with (51), the coefficients to the F� ikF� il (i{k{l ) and
F� ij F� kl (i{ j{k{l ) terms imply the respective restrictions on Q-vectors:

rki } Q (i, l )
k +rli } Q (i, k)

l =4r2
kl(rki } rli )

2 (55a)

rij } Q (k, l )
i +rji } Q (k, l )

j +rkl } Q (i, j )
k +rlk } Q (i, j )

l

=4[r2
ik (rij } rkj )(ril } rkl)+r2

il (rij } r lj )(rik } rlk)

+r2
jk (rji } rki )(rjl } rkl)+r2

jl (rji } r li )(rjk } rlk)] (55b)

with no order inequalities put on [i, j, k, l ]. The important feature of the
ansatz proposal (52) consists in the equality

`
u<v

Fuv (r i, 1F� i1+ } } } +ri, NF� iN )= 1
2 {i \ `

u<v

Fuv+ (56)

[see relation (49')]. Using formula (56) for every term in (52), the conse-
quent per-partes integrations lead to

(52)=&1
2 | `

i

di `
u<v

Fuv :
i

{i } Qi (57)

The point is that the functions [F� kl] in Q i (53) do not depend on coor-
dinate ri , and therefore the nabla operator acts only on coefficients
[Q (k, l )

i ]. This is why expression (52) becomes linear in F� -functions. It com-
pensates the linear term in (51) just when

{i } Q (k, l )
i =2rkl } (r2

ki rki&r2
lirli ) (58)

To summarize, J (s)
2 , given by (51), equals to zero provided there exists a

three-point vector function Q (k, l )
i with properties (54a), (54b) and satisfy-

ing conditions (55a), (55b) and (58). One can readily verify on computer
that such vector function exists: it is the homogeneous polynomial of the
fifth order and its x-component reads

[Q (k, l )
i ]x= 2

3 (&2u4
xvx&2uxv4

x+2u3
xv2

x+2u2
xv3

x&2u3
x v2

y&2u2
yv3

x

&ux v4
y&u4

y vx&u3
xuyvy&uyv3

xvy&3uxv2
xv2

y&3u2
xu2

yvx

&ux u3
yvy&uy vxv3

y+6uxu2
yv2

x+6u2
xvxv2

y&6uxu2
yv2

y

&6u2
yvxv2

y+8uxuyv3
y+8u3

yvxvy) (59)
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where u=rk&ri and v=rl&ri . The y-component [Q (k, l )
i ]y results from

(59) under interchange transformation ux W uy , vx W vy . We conclude that
J (s)

2 =0, confirming relation (32b).

6. CONCLUSION

The Fourier transform of (26a) results in

ĉ(k)=&1�k2+ĉ0 (k)+ :
�

s=1

ĉs (k) (60)

With regard to the equalities (32a, b) proved in the previous section, we
have

ĉs (k)=O(k4) (s=1, 2,...) (61)

Using the formula(25)

|
�

0
x1+2sK 2

0(x) dx=2(2s&1) (s !)4

(2s+1)!
(s�0) (62)

the contribution of the renormalized Meeron-graph (26b) to the Fourier
component of the direct correlation reads

ĉ0 (k)=
1

8?n
&

k2

96(?n)2+O(k4) (63)

Consequently, the expansion of ĉ(k) up to the k2-term coincides with the
suggested formula (21) and, via the OZ relation, the (rescaled) sixth
moment of h is indeed a finite 1-truncation

n \?1n
2 +

3

| r6h(r) dr=
3
4

(1&6)(8&31 ) (64)

as indicated in (20).
In conclusion, we would like to stress that the derivation of the sixth

moment of h was possible due to the property (61), valid separately for
each family of direct-correlation diagrams generated from the correspond-
ing, completely renormalized, graph of the Helmholtz free energy. The
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higher-order coefficients of the k-expansion of ĉs (k) (s=1, 2,...) we were
able to attain do not longer vanish, e.g.,

ĉ1 (k)=&
k4

(2?n)3

2
(4!)2 5! |

�

0
K 3

0(x)[176x+108x3+9x5] dx+O(k6) (65)

where the numerical value of the integral r116.68... . This fact indicates
that the eight- and higher-order (appropriately rescaled) moments of h are
probably infinite series in 1. However, there might exist another
mechanism for the exact solvability of higher-order moments as well. We
believe that the present method will answer this interesting question.

APPENDIX A

Here, we derive an algebraic procedure removing a two-coordinated
root point, generated by the functional derivation with respect to density
at a renormalized K-bond and interacting quadratically with another root
point (generated either at a skeleton more-than-two-coordinated vertex or
at a bond), in the representation of the second moment of a cs-family (sub-
Section 5.2). We consider the uniform regime with constant density n and
translationally+rotationally invariant interactions

K(r1 , r2)=| exp[ip } (r1&r2)] K� (p)
dp
2?

(A1)

K as the function of n is given by the uniform analogue of functional
relation (27),

�K( |r1&r2| )
�n

= | K( |r1&r| ) K( |r&r2 | ) dr (A2a)

or, in the 2d Fourier picture,

�K� (p)
�n

=2?K� 2 (p) (A2b)

Let us first consider the case represented schematically as follows

f (u1 , u2)= =| r2 K( |u1-r| ) K( |r-u2 | ) dr (A3)

661Sum Rule for Pair Correlations of 2D One-Component Plasma



where u1 and u2 skeleton vectors define the bond decorated via (27) by the
two-coordinated root point r, integrated out and interacting via r2-interac-
tion with another root point (whose coordination is irrelevant at this
stage), put for simplicity at the origin 0. Using the Fourier representation
of K, (A3) can be rewritten in the form

f (u1 , u2)= &
1
2 | dr |

dp
2? |

dq
2?

K� (p) K� (q)

_[eip } u1eiq } (r&u2) 2p [e&ip } r]+eip } (u1&r) e&iq } u2 2q[eiq } r]] (A4)

Integrating twice per partes in (A4) over p(q) [what can be certainly done
for our K� (29a) with vanishing boundary contributions] and then integrat-
ing over r, implying $(p&q), we get

f (u1 , u2)=&| dp[eip } (u1&u2) K� (p) 2K� (p)+ 1
2 K� 2(p)(e&ip } u2 2p[eip } u1]

+eip } u1 2p [e&ip } u2])+K� (p) {K� (p) } {p eip } (u1&u2)] (A5)

Integrating per partes once more the last term in (A5), we finally arrive at

f (u1 , u2)= 1
2 (u2

1+u2
2) | eip } (u1&u2)K� 2 (p) dp

+| e ip } (u1&u2) |{K� (p)| 2 dp (A6)

With regard to the ``decoration'' relation (A2b), (A6) can be written in a
more consistent form

f (u1 , u2)=
1
2

(u2
1+u2

2)
�K( |u1&u2| )

�n
+8( |u1&u2| )

8(u)=| e ip } u |{K� (p)| 2 dp (A7)

This equation admits a trivial generalization

| |r&u|2 K( |u1&r| ) K( |r&u2 | ) dr

=
1
2

( |u1&u| 2+|u2&u|2)
�K( |u1&u2| )

�n
+8( |u1&u2| ) (A8)
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The double application of formula (A8) solves immediately the
problem of two root points generated on two different bonds:

The final result reads

| |r&r$ | 2 K( |u1&r| ) K( |r&u2 | ) K( |v1&r$ | ) K( |r$&v2 | ) dr dr$

=
1
4

[|u1&v1 | 2+|u1&v2 | 2+|u2&v1 | 2+|u2&v2 | 2]

_
�K( |u1&u2| )

�n
�K( |v1&v2| )

�n

+
�K( |u1&u2 | )

�n
8( |v1&v2 | )+

�K( |v1&v2| )
�n

8( |u1&u2 | ) (A9)

When the two root points are generated on the same bond,

there holds

| K( |u1&r| ) |r&r$ | 2 K( |r&r$ | ) K( |r$&u2| )

=&2? | e ip } (u1&u2)K� 2 (p) 2K� (p) dp

#9( |u1&u2 | ) (A10)

APPENDIX B

In this part, we establish the transition from relation (47) to Eq. (48).
The origin of bond-dependent F-factors is irrelevant with the only proviso
that the integrals exist.

Let us first consider the integral over infinite 2d space

1
V | |r1&r2 | 2 f ( |r1&r2| ) dr1 dr2=| r2f (r) dr (B1)
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written in the center-of-mass inertia; the supposed translational invariance
of function f12#f (r12) is important. The scaling transformation of coor-
dinate r � (1+*)r does not alter the infinite boundary, and hence

| r2f (r) dr=(1+*)4 | r2f [(1+*)r] dr (B2)

Expanding (1+*)4=1+4*+6*2+O(*3) and

f (r+*r)= f (r)+*(r } {) f + 1
2*2 (r } {)2 f& 1

2*2 (r } {) f +O(*3) (B3)

in Eq. (B2), the nullity of coefficients to the * and *2 powers implies,
respectively,

0=
1
V | |1&2|2 [4 f12+(R12 f12)] d1 d2 (B4a)

0=
1
V | |1&2|2 _6 f12+

7
2

(R12 f12)+
1
2

(R2
12 f12)& d1 d2 (B4b)

where we have adopted the operator notation given in (46). Note that the
sum of two zeros [Eq. (B4a)]�8+[Eq. (B4b)]�4,

0=
1
V | |1&2|2 _2 f12+(R12 f12)+

1
8

(R2
12 f12)& d1 d2 (B5)

with substitution f12=F12 corresponds to the rhs of (47) for the simplest
N=2 case.

Let us introduce the functions g12 and g� 12 as follows

F12g12=| d3 } } } dN `
N

u, v=1
(u<v)

Fuv (B6)

F12g� 12=| d3 } } } dN `
N

u, v=1
(u<v)

Fuv :
N

i=3
_ 1

F1i
(R1iF1i )+

1
F2i

(R2iF2i )& (B7)
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Both functions evidently possess the translational-invariance property. The
sequence of operations [Eq. (B5) for f12=F12g12]&[Eq. (B4a) for f12=
F12 (R12g12)]�4+[Eq. (B4a) for f12=F12g� 12 ]�8 leads to

0=
1
V | d1 d2 |1&2| 2 _2F12g12+(R12F12)g12+

1
8

(R2
12F12) g12+

1
2

F12g� 12

+
1
8

(R12F12) g� 12+
1
8

F12 (R12 g� 12)&
1
8

F12 (R2
12g12)& (B8)

We take advantage of the flexibility in choosing operator R (46), and
evaluate R2

12g12 first by applying R12=(r1&r2) } {1 and then by applying
R12=(r2&r1) } {2 , with the result

F12 (R2
12g12)=F12 (R12g12)+F12 (R12g� 12)

+| d3 } } } dN `
u<v

Fuv :
N

i, j=3

1
F1i F2j

_[[(r2&ri ) } {1F1i][(r1&rj ) } {2 F2j]&(R1iF1i )(R2jF2j )]
(B9)

The substitution of (B9) into (B8) gives

0=
1
V | `

i

di `
u<v

Fuv |1&2|2 {2+
1

F12

(R12F12)

+
1

8F12

(R2
12 F12)+

1
2

:
N

i=3
_ 1

F1i
(R1iF1i )+

1
F2i

(R2iF2i )&
+

1
8

1
F12

(R12 F12) :
N

i=3
_ 1

F1i
(R1iF1i )+

1
F2i

(R2i F2i )&
+

1
8

:
N

i, j=3

1
F1iF2j

(R1iF1i )(R2jF2j )

&
1

16
:
N

i=3
_ 1

F1i
(r1&r2) } {1F1i+

1
F2i

(r2&r1) } {2F2i&
&

1
8

:
N

i, j=3

1
F1iF2j

[(r2&ri ) } {1 F1i][(r1&rj ) } {2 F2j]= (B10)

Combining Eq.(B10) for each pair of skeleton vertices with Eq. (47), the
latter reduces to relation (48).
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